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The wall of a large tank or reservoir breaks, sending fluid against a secondary contain- 
ment dyke. The impact of the surging fluid against the safety barrier is studied. The 
results of theoretical analysis and numerical simulation (for vertical dykes) are in good 
agreement with experimental data concerning overflow and total spillage as well as the 
fluid motion after collision, including the development and formation of a strong shock. 
The dependence of spillage on the inclination of the dyke is also determined by 
experiment. 

1. Introduction 
Safety regulations sometimes require that a tank storing a dangerous liquid be 

surrounded by an impounding dyke in order to  contain any accidental spillage. For this 
purpose, the volume capacity of the dyke usually approximates that of the storage 
facility, which can be several million cubic feet. 

We examine the consequences of a sudden, massive rupture or collapse of the tank 
wall which releases a large volume of liquid in a relatively short period of time. Dykes 
have not been designed to prevent the ovedow of a rushing liquid and a substantial 
part of the stored fluid can surge over the impounding wall and escape from the 
containment area. Indeed, very little is actually known about fluid impact against and 
flow over a barrier, and these transient problems are studied here both theoretically 
and experimentally. 

2. Formulation 
The collapse of a large section of tank wall, as the result of, say, an earthquake or 

accident, releases a mound of liquid which moves rapidly and impacts upon the 
containment dyke. The fluid surmounts the barrier and the manner in which this 
happens depends in part on the shape of the dyke. The rushing liquid may simply 
vault an inclined side, or it may pile up very rapidly a t  the face of a vertical wall and 
then flow over the top. In  either case, a strong shock wave forms a t  the dyke and 
returns towards the storage tank. Clearly, the process is a very complicated and highly 
nonlinear dynamical interaction. However, the essential features of the surge and 
overflow can be elucidated by examining the fluid motion in the simplest and most 
ideal conditions. To this end, we consider the two-dimensional configuration shown in 
figure 1 (which when revolved about the vertical axis at x = - R generates the more 
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FIGURE 1. Defining diagram and cross-section of a storage tank in a finite reservoir and 
a containment dyke. The removable wall is a t  the origin. 

typical geometry of a cylindrical storage tank surrounded by a circular dyke). Liquid 
is released when the wall of the tank at x = 0 is removed a t  time zero; the flow is then 
directed against a dyke of height a placed at  x = L. The impact surface of the barrier is 
taken to  be vertical in the theoretical analysis; flow over an inclined dyke is examined 
here only by experiment. 

In  the experimental arrangement, the tank is a gin. cube one wall of which is a 
movable slide that is pulled out quickly to  simulate a massive rupture. The water flows 
into a long channel that is open a t  the other end. Figure 2 (plate 1 )  is a typical sequence 
of photographs showing the fluid motion after release. (The total time period pictured 
is about 1s.) Water rushing towards the dyke a t  high speed catapults high into the 
air upon colIision. The fluid piles up and pours over the dyke as a bore returns to  the 
region of collapse. 

The overflow, designated by Qo and defined as the fraction of the original fluid 
volume that escapes upon impact, is the primary quantity of interest and importance. 
The object of theory is a correct qualitative and quantitative description of events, 
meaning that the spillage can be calculated and its dependence on the various para- 
meters ascertained. This may be accomplished by employing the nonlinear shallow- 
water theory, which has been appliedwith remarkable success in ' dam-break ' problems 
of the type under investigation. 

The nonlinear shdlow-water equations are in essence depth-averaged versions of the 
conservation laws of mass and momentum in which the dependent variables are the 
free-surface height h(x, t )  and the mean horizontal velocity u(x ,  t ) :  

The quantity 

which is the wave speed of a disturbance in the flow, plays a fundamental role in the 
theory. Here g is the acceleration due to  gravity and h,(x) is the elevation of the dry 
ground above some reference level; h - hff  then measures the depth of the fluid. 

It is assumed that the terrain between the tank and the vertical dyke is level and 
smooth, so that hct = 0 (but in more complicated geometries, including inclined-dyke 
problems, topographic variations are important and must be included). Viscosity, 
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turbulence and ground resistance have been neglected. The errors introduced by these 
approximations are found to  be acceptable, although the theory can be modified to 
account for such effects (Dressler 1954; Whitham 1955). 

Equations (2.1) and (2.2) can be rewritten as 

2(c, f uc,) + cu, = 0, 

U t  + uu, + 2cc, = 0. 

(2.4) 

(2.5) 

The specification of initial and boundary conditions completes the formulation of the 
problem. For t < 0, the quiescent fluid fills the tank, so that 

u(x ,  0 )  = 0 ,  c(x,  0 )  = ( g H ) )  for -R < x < 0. (2.6) 

The wall of the tank at x = 0 is then removed instantaneously and the water rushes 
over a dry bed towards the vertical dyke at x = xw = L. After impact, the fluid 
velocity at the dyke is zero until the water level there exceeds the height a of the 
barrier and overflow begins. With cf = qa, this can be expressed as 

u(xw,t)  = 0 for c(xW,t) < co. 

An appropriate condition is required to  describe overflow. 

level on top of the dyke at x = x, is hw - a, and the local wave speed there is 
If the height hw of the fluid a t  the impounding wall is larger than a then the water 

c" = [g(hw-a)]*. 

We assume that fluid which passes over the barrier ceases to influence the main body 
of water still within the containment area. This is assured by setting .ii = E, where .iz 
is the fluid velocity upon the dyke. (The convected propagation velocities are then 
positive and no ' signal ' can travel backwards.) Since the conservation of mass requires 
uwhw = C(h, - a ) ,  these relationships can be combined as 

u = (c2-c$c-2H(c-c0) at x = xw, (2.7) 

where the Heaviside function 
1, x > 0, 
0, x < 0, 

H ( x )  = 

is used to incorporate different conditions at this boundary into one succinct formula. 
The condition at the other, intact wall of the tank is 

u = O  at x = - R .  (2.8) 

The height of the tank H and the time (H/g)*  are characteristic scales that are used 
to  make the problem dimensionless by the following transformations: 

x + Hx,  t + (H/g)* t ,  h -+ Hh, u -+ u(gH)*, c -+ (gH)*. 

The bmic equations (2.4) and (2.5) remain unchanged in this non-dimensionalization, 
as does the overflow condition (2.7). Equation (2.6) is now 

u(x,O) = 0, c(x,  0 )  = 1 for - R / H  6 x < 0 ( 2 . 6 ~ )  

and (2.8) holds a t  x = - R / H .  
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Since the motion obviously involves the development and propagation of a shock 
as well as the reverberation and interaction of all wave disturbances, the following 
shock conditions are required in the analysis. 

Let subscripts f and b denote the front and back of the shock, i.e. the regions into 
and from which the shock moves in the next instant of time. If U is the shock velocity 
and M = cb/cf,  then the forms of the jump conditions that will be most convenient to 
use are 

We turn now t o  the solution of the problem. 

3. Theoretical analysis 
The propagation and reflexions of the shock and the principal rays divide the x ,  t 

space - R / H  < x < L / H ,  t 2 0 into the distinct regions illustrated in figure 3. It is 
then convenient to describe the solution in each domain, as well as the particular 
analytical and/or numerical methods employed. 

After the wall of the tank at  x = 0 has been removed, water rushes towards the dyke 
at x = x ,  = L / H ,  and a rarefaction wave moves into the tank. During this early stage, 
the fluid in region I is still at rest whereas region I1 is devoid of water. The solution of 
the equations of motion in region 111, which is identical t o  that for the classical dam- 
break problem, is 

u = $(1 + x / t ) ,  c = + ( Z - x / t ) .  (3.1) 

The leading edge of the fluid, which corresponds to c = 0, moves with the constant 
dimensionless speed 2 [i.e. twice the natural propagation speed (gH))] and reaches the 
dyke at time t ,  = #xw. Meanwhile, a rarefaction wave propagates at a constant velocity 
of unity in the reverse direction and reflects off the rear wall at x = - R/H when 
t = R / H .  

Upon collision of the fluid with the vertical face of the dyke, water accumulates 
rapidly and to a great height; a strong shock forms and moves, slowly at first, back 
towards the tank. Since the edge of the advancing fluid front has zero thickness in the 
inviscid theory, impact must be examined analytically, and with care, in order to 
provide the data to initialize 8 numerical program. Therefore let the shock locus be 
described by xs(t) for t 2 t ,  with xs(t,) = x, and xi( t )  < 0. For some time after impact, 
the flow into which the shock is advaacing is given by (3.1). A solution of the baaic 
equations is then sought in domain V between the shock and the dyke, xs < x < x,, 
which satisfies the shock conditions given in (2 .9)  and the overflow condition (2.7). 

The study of impact is facilitated by introducing space and time variables centred 
at the point of collision as follows: 

Furthermore, we define 5 = 7/T2 
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FIGURE 3. Regions of x, t space delineated by the loci of 
the shock and the principal rays. 

and represent all the flow variables as power series in 7 in the region between the 
hock, I& = v 8 / 7 2 ,  and the barrier, C = 0: 

The shock locus is written as 

and the shock velocity by implication is 

6 = Z(T)  = zo + z17 + . . . 

u = -dT3/d7 = -d[722(7)]/dT = - ( 2 Z O T f 3 Z 1 ~ 2 + . . . ) .  

(3 .5)  

(3.6) 

The substitution of these series into the equations of motion (2.4) and (2 .5) ,  the 
conditions (2 .9)  at the shock and the conditions (2 .7)  (before overflow) at the wall yields 

where 
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FIGURE 4. Water level ca near the dyke and across the shock for 
several values of the scaled time following impact. 

The numerical values of the constants are 

ko = 1.373178, kl = - 1’054409, ZO = 0.157135, 21 = -0.035232, 

gl(zo) = - 1.063400 and fi(zo) = -0.237886. 

Equations (3.4)-( 3.7) give the entire solution in region V for a short period following 
impact. At this time, water is rapidly piling up at the dyke behind the shock. Soon 
fluid will begin to flow over the barrier and/or the reflected waves will interact with 
the propagating shock (the boundary between IV  and V). In  either case the series 
solution then ceases to  be valid. Examination of the formulae for x,(t) and c2 shows 
that water accumulates quickly a t  the dyke because the shock is very slow in starting. 
Moreover, the free-surface height behind the bore is nearly uniform at any instant of 
time (figure 4). This is the basis of an analytical approximation which enables the 
motion in V to be determined for much longer times when the wall of the dyke is too 
high to allow any overflow. 

An integral form of the conservation of mass states that all the water that passes 
through the shock accumulates beyond the shock if the wall is ‘infinitely’ high: 

( 2 t  dx = fZt, c$ dx, 
J X, J XI 
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FIGURE 5. (a) Shock position wg. time following impact. (5 )  Water level at the dyke. -, numerical 
calculation; , analytical approximation, equations (3.9) and (3.10). 
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where cIII and cv are the propagation speeds in the designated regions. In  particular, 
If c$ is approximated as a function of time only, then the substitution 

of this formula in (3.8) yields 
= *(2 - 

Now condition (2.9) on the shock velocity (with the identifications cf = cIII, uf = uIII, 
cb = cv) is used to obtain a differential equation for x3(t)  or equivalently for q3(7): 

(3.10) 

where M 2  = (27+qS)/3q3. (3.11) 

For small values of 7,  

7 3 9  = L. x 2 f ~ ~ - 2 z ( 2 % -  1) 7’ + . . . . (3.12) 

The comparison of this approximate formula with the exact result given in (3.5) shows 
only a slight difference in the respective coefficients of 73 ( - 0.03386 us. the exact value 
- 0.03523). Equation (3.10) is integrated forwards in time using (3.12) or preferably 
(3.5) to  specify the variables at the early time A7. The results for the shock locus and 
the water level at the dyke are shown in figure 5 .  

Integral approximations of the mass and momentum conservation laws in the 
region behind the shock can also be adapted to study overflow. This extension of the 
theory is not presented because at  best the results duplicate those obtained from the 
efficient numerical solution of the complete problem in regions V, VI and beyond. 
Unfortunately, the complicated wave interactions in these domains do necessitate 
use of the computer. 

4. Numerical analysis 
The numerical computations are based on the characteristic form of the equations 

of motion: 
u rf: 2c = constant on dxfdt = u & c (C* characteristics). (4.1) 

The computer program is used primarily to determine the flow in the later and more 
complicated situations in regions IV, V and beyond. (However, the numerical methods 
are checked in detail by their ability to  reproduce accurately the exact theoretical 
solution in regions I, I1 and 111.) The analysis of the initial impact of the surge against 
the dyke and the formation and propagation of the shock provides the data, (3.4)-(3.7), 
that are required to  start the computer routine. 

The calculations a t  time t proceed from the known values of u and c at an earlier 
time and at  the physical boundaries x = - R/H and x = L/H.  The dependent variables 
are represented by values at  a grid along the x axis, using linear interpolation to define 
points between nodes. The physical positions of these nodal points differ at successive 
times in order that the shock always lies between two nodes, at  which points the values 
of the dependent variables satisfy the shock conditions. The nodes within each region 
are uniformly spaced; their number depends on the relative lengths of the regions 
separated by the shock and on the total number of nodes allocated. Calculations are 
advanced in time by the method of characteristics, equations (4.1). Thus, to determine 
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FIGURE 6. Defining diagrams for numerical grids. 

uin and cin at the position xin and at  the new time t ,  (see figure 6a) the following 
algorithm is applied: 

(i) Calculate ui and ci at the same x position xi, but at the old time t .  
(ii) Determine xp, the x position at  the old time whose plus-characteristic passes 

through xin: 
( X i n  - x , ) / ( t ,  - t )  = ui + ci.  

(iii) Obtain up and cp  at x ~ , .  
(iv) Similarly, evaluate x ,  using the minus-characteristic, ui and ci, then interpolate 

(v) Calculate uin and cin from the simultaneous equations 
to find u, and c,. 

up + 2cp = Uin + 2cin (4.3) 

and u,n - 2c, = Uin - 2ci,. (4.4) 

(vi) Use these results as starting conditions for determining uin and cin from central- 
difference formulae. 

(vii) Recalculate x p  and x ,  from the average of u and c a t  the old and new time 
end points of the characteristics obtained in the previous iteration. 

(viii) Redetermine up, c p ,  u,, cn,, uin and cin and continue the process until the 
successive xp’s and X,’S differ insignificantly from previous values. 

A t  the dyke x = xw, we require that t,, - t be sufficiently small that all interior nodes 
at t, lie between the plus-characteristic through the shock position at t and the minus- 
characteristic through xw. In  this way, problems of interpolating along the wall or the 
shock are avoided. Linear interpolations are employed using data defined a t  node 
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FIGURE 7. Computer simulation of the collapse and surge shown in figure 2. 
The graphs are arranged in correspondence with the photo sequence. 

points along the segment between xs and xw to determine u and c at points not co- 
inciding with nodal values from the two adjacent nodes. 

At the shock, the jump conditions (2 .9)  are invoked along with the information on 
the ray that feeds the discontinuity. For example, on the shock locus separating 
regions I11 and V, the C- characteristic equation gives (see figure 6 b )  

(4.5) urn- 2crn = u b  - 2cb. 

The values of u,b and cb can then be determined from a Newton-Raphson iteration with 
cb a t  the previous time as a starting condition. The values of uf and cf ahead of the 
shock in region I11 are given by 

uf = +xsn/tn), cf = +(2-xm/ tn ) ;  (4.6) 

the shock velocity is then obtained from (2 .9) .  Initially, we locate the bore a t  time tn, 
using forward differences 

where the shock velocity U is evaluated at time t .  The new shock location is recom- 
puted using central differences and the average of the shock velocities; the shock 

xsn = xs + up, - t ) ,  



Flow over a containment dyke 189 

conditions are recomputed as well. This process is repeated until the change in shock 
position is insignificantly small. 

We adopted central differences for our computations because forward differences 
sometimes introduce numerical instabilities. Few individual computations required 
more than three or four iterations to converge to the central difference. 

Results were relatively insensitive to the number of z-position nodes employed; we 
generdly used 50-100. Time steps were interpolated as necessary to ensure that the 
plus- and minus-characteristics to interior nodes at the new time depended only on 
information at the previous time. 

The shock eventually reaches the back of the tank at x = - R / H .  The reflexion of 
the bore from the rear wall of the tank is determined from the shock conditions using 
the known values of cf and uf in region V and ub = 0 at the wall. The locus is then 
computed, as before, until there is reflexion once again off the dyke. The process is 
continued in an entirely similar way for &s long as desired. 

For various values of L / H  and R I H ,  computations were made to determine the 
percentage of original tank fluid which spilled over the dyke. This is 

where uzo and c,  are values at the dyke. The shock locus was also calculated through 
several reflexions. Typical computer drawings of the water level c2 between tank and 
dyke at various times are shown in figure 7. This sequence corresponds t o  the experi- 
mental situation shown in figure 2 and the individual plates are also set in corresponding 
positions. Qualitative agreement is evident; a more detailed comparison of computa- 
tions with theory and experiment is given in 0 6. 

5. Experiments 
Experiments were performed to complement (and to assess) the theory and also to 

explore quickly a number of modifications of the basic configuration. A Plexiglas tank 
was constructed which measured 9 x 9 x 48 in. A removable wall 9 in. from one end 
divided the tank into a reservoir and a spillage channel. Dykes could be positioned 
along the channel as shown in figure 1 ; their impact surfaces had inclinations of go", 
60" and 30". 

The reservoir was filled with water to  a height H ( < 8 in.) and the slide was subse- 
quently removed as rapidly as possible. The surge was videotaped; slow motion play- 
back was used to photograph the action and to measure the shock locus. Impact, 
overflow and shock formation for a vertical and a 60" inclined dyke me shown in 
figures 8 and 9 (plates 2 and 3). At the earliest times, before the effect of gravity is 
substantial, the flow at the vertical wall is similar to  that described theoretically by 
Cumberbatch (1960). Some fluid is thrown high into the air as a plume which collapses 
into the main body of water that accumulates behind the shock and flows over the 
dyke. 

The surge runs up the inclined dyke more easily and vaults a considerable distance 
behind it. Although there are significant dynamical differences in these cases, the 
spillages are commensurate. (Roughly, about 10 % more of the stored fluid spills over 
the inclined dyke.) 
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In  order to measure the spillage due to the initial impact only, designated by Qo, 
the slide was reinserted to prevent the reflected shock from returning to the dyke. (In 
all cases, the overflow had stopped when this action was taken.) If the shock were 
allowed to reverberate freely between wall and dyke, some additional spillage could 
occur on successive impacts. However, the total overflow, denoted by Ql, was found 
to differ little from Qo. For L/R = 2, the maximum difference is 5 yo. (Sloshing is an 
important factor in the total spillage when L is small and a is large, i.e. for a high dyke 
very close to the wall of the tank.) 

Measurements were made for various values of H ,  L and a (and the inclination 
angle). Each case was repeated at least three times and several hundred trials were 
made. The data were found to be reproducible with an average error of 2 %. 

The height of the dyke for which the containment volume exactly equals the 
capacity of the storage tank is written ;LS ap. This is the height often prescribed by 
safety standards, which is the reason why it receives special attention. 

6.  Discussion 
The principal finding concerning flow over a vertical dyke is that, within the para- 

meter range studied, the volume fraction of fi uid that escapes depends mainly on a / H ,  
the ratio of the barrier height to that of the filled tank. Figure 10 indicates that the 
overflow or spillage fraction Qo is mainly a function of a /H for all combinations of 
barrier and tank heights in the range 4 < L/R  < 4. The corresponding numerical 
calculations also show little dependence on LIR. 

Figure 1 1  shows Qo us. a,/H (i.e. the containment and storage capacities are equal). 
Theory is in good agreement with observations; the larger values of Qo predicted are 
due in part to having neglected ground resistance and turbulence. The amount of fluid 
that escapes increases as the dyke is placed further from the wall and its height 
decreases accordingly to maintain the same volume capacity. (Of course, ground 
friction would ultimately negate this finding if extremely large values of LIH were 
involved, which is not the case in practice.) The measured spillage fraction Qo for each 
of three dykes of the same height but with inclinations of 30°, 60°, 90" is presented in 
figure 12. Obviously, a decrease in inclination from 90" allows more liquid to escape 
because the surging fluid retains much of its forward horizontal momentum during 
and after impact. As a result, the water vaults over the barrier and lands a considerable 
distance away. The spillage over an inclined dyke is at most twice that over a vertical 
wall of the same height. However, for most values of a / H ,  the differences are much 
smaller. 

Although there is no explicit vertical velocity in the shallow-water theory, the law 
of conservation of mass enables the theory to account for the actual rise of fluid after 
it hits the wall. The height attained by the main body of fluid that accumulates behind 
the developing shock indicated by arrows in figure 13 (plate 4) is slightly larger than H ,  
the original fluid level. The measured values exceed theoretical predictions by about 
15 yo. 

The model cannot describe the flight of particles from the leading edge of the surge, 
which reach a height three times that of the tank. The amount of fluid involved is 
small although the collapsing plume does affect the movement of the shock. 
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Experimental and theoretical values of shock velocity are in good agreement but 
a consistent spatial displacement exists regarding the actual position of the bore. Part 
of this discrepancy is due t o  the fact that the real fluid hits the dyke somewhat later 
than predicted because friction and ground resistance slow the surge. Presumably, the 
results could be improved by including these effects in the model (Whitham 1955). 
(Our data on the arrival time of the front at the dyke agree with results of Dressler 
1954.) However, there is also some difficulty in discerning and measuring the position 
of the shock just after impact. The shallow-water equations are perhaps most limited 
in describing events during this short period of intense vertical motion, although the 
theory predicts the main features of both flow and spillage remarkably well. 

The overflow boundary condition (2.7), which is based in the local critical wave 
speed, seems generally satisfactory. Spillage must depend to an extent on the shape 
of the back of the dyke (where the water leaves the soIid surface) &s well as motion on 
top of the wall but a more refined theory would be required to  treat these (secondary?) 
effects. 

In  circular geometries, the rushing liquid spreads as it flows from the ruptured wall 
to the dyke. Although this sideways motion must decrease the spillage, exploratory 
experiments indicate that the volume lost is still of the same order of magnitude as 
that calculated for the unidirectional flows examined here. It is anticipated that up to 
25 yo of the stored fluid could escape from the containment area by surmounting a 
barrier of prescribed height ap. A sloping dyke permits an even larger amount of 
spillage since the fluid vaults the dyke in addition to simply spilling over owing to 
accumulation. 

The comparison of theory and experiment for the same simple geometry establishes 
the relevance and accuracy of the model and of the specific approximations made. All 
of this is a necessary prelude to the creation of computer simulations of surges within 
actual installations or to design studies, when experiments are not feasible. The 
numerical and theoretical techniques developed in this study may be useful in these 
endeavours. 

This research was partially supported by the United States Air Force Grant no. 
77-3234 and The United States General Accounting Office. Miss E. Greenspan served 
as laboratory assistant. 
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F I C ~ ~ I ~ E  13. Impact seqiicnco showing the overflow and formation of a shock. Theory accounts 
!bell for fliiid motlon below the height indicated by the arrows. Particles in tlic Iiqiiid jet above 
this are csseritially in free flight and reach a height about three times that of the tank. 
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